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The flow is considered of a Newtonian fluid, of viscosity q and surface tension T, in 
the narrow gap between a pair of rollers of radii R, and R,, whose peripheral speeds 
are constant and equal to U, and U, respectively. The objective is to determine the 
coating thickness h," on the upper roller as a function of the non-dimensional para- 
meters H,/R, qU/T and U,/U,, where H, is the minimum gap thickness, U = &( U, + &), 
and 2R-1 = Ri'+R,'. 

Using lubrication theory to provide an adequate description of the fluid flow, two 
mathematical models are derived whose essential difference lies in the specification 
of the boundary conditions. In  the separation model it is msumed that the pressure 
distribution will terminate at a position which is both a stagnation point and a point 
of separation, whereas the Reynolds model incorporates the classical Reynolds con- 
ditions. In  each case, theoretical predictions for the non-dimensional coating thickness, 
@/No as a function of Ul/U, are found to compare well with experiment. However, 
theory does suggest that the two models are applicable to different and complementary 
regions of parameter space, and hence together they may form a basis for further 
investigations into the various features of coating processes. 

1. Introduction 
Coating processes arise in a variety of contexts including the tin-plate, printing-ink, 

photographic, and paint industries. Generally they involve a pair of rollers of radii 
R, and R,, as shown in figure 1, moving with peripheral speeds U, and U,. Fluid is 
picked up from a reservoir by the lower roller; it passes through a narrow gap of 
minimum thickness H, and on emerging splits into two uniform layers of thickness 
h; and hr attached to the upper and lower rollers respectively. It is the layer on the 
upper roller that is used for coating and therefore one seeks to determine the way in 
which its thickness depends upon the system parameters. 

Greener & Middleman (1976) analysed the symmetric problem in which the roller 
speeds are equal, U, = U, = U .  Their model is based on the assumption that the fluid 
film extends over a semi-infinite domain terminating at a fluid-air interface where 
there is a stagnation point and where symmetry considerations imply that the gradient 
of velocity is zero; au/az = 0. Since the uniform layers attached to each roller have 
the same thickness, h? = 4" = ha, Greener & Middleman proceeded to show how the 
film-thickness ratio hW/H, varied with By the modified capillary number defined by 

The principal objective in this paper is to extend the work of Greener & Middleman 
to the general coating situation, which involves rollers of arbitrary size and speed; 

B = (T/rlU) (HO/W. 
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U, =f= U,, U, > 0, U, > 0. Following Greener & Middleman, lubrication theory is used 
to describe the flow of a Newtonian fluid in the semi-infinite domain shown in figure 1. 
It should be noted that the precise location of the fluid-air interface would require 
a two-dimensional analysis of the fluid flow in the vicinity of the interface, which is 
beyond the scope of the present paper. As a first step we shall present approximate 
yet simple boundary conditions which can be used to furnish useful results within the 
lubrication approximation, Consequently, two mathematical models are formulated 
for the pressure distribution, P(x) ,  over a semi-infinite domain. 

In the separation model the pressure curve terminates where u = au/& = 0, which 
refers to a position that is both a stagnation point and a point of separation. That 
such a position may be located either on the interface or at the onset of a reverse flow 
region is discussed in $2 .  Previously these conditions have been applied to two parti- 
cular flows; to the symmetric coating problem mentioned earlier and to the flow 
between a cylinder and a flat substrate (Hopkins 1957), which from figure 1 corres- 
ponds to R, = 00, U, = 0. In  the former case the separration/stagnation point lies 
midway between the rollers, in the latter it is attached to the stationary surface. For 
the Reynold8 model the classical Reynolds conditions p = ap/ax = 0 specify the ter- 
mination of the pressure distribution. 

A solution to the separation model yields the film-thickness ratio, A, = @/Ho,  as 
a function of speed ratio U,/U,, and modified capillary number p. However, in the 
region of practical interest, B < 1 and the variation of A, with p is slight. Therefore if 
A t  is the limiting value of A, such that A, 3 A? as /3 -+ 0, then it is of interest to plot 
A t  against U,/U,. For both the separation and Reynolds models it is found that 
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theoretical predictions are in good agreement with experimental data. Finally, the 
relative merits of the two models are discussed. 

2. Mathematical Formulation 
Figure 1 shows a cross-section of a two-roller system where the origin of (2, 2)-co- 

ordinates is situated in the nip, such that the lower and upper roller surfaces are given 
by z = 0 and z = h(x) respectively. The gap is assumed to be fully flooded upstream, 
so that fluid occupies the semi-infinite domain - 00 < x < c,  where x = cis the position 
of the fluid-air interface. At either extremity there arise regions of circulatory flow 
and free surfaces, for which a detailed analysis is beyond the scope of this paper. 
However, by following Pearson (1960), mathematical models can be formulated by 
making use of the lubrication approximation, which is assumed to be valid throughout 
the domain. Clearly, refinements to a basic model may be incorporated at a later stage. 

The gap thickness is approximated by the equation 

such that if an average radius R is defmed by 

2 1 1  -=-+-, 

h ( ~ )  = Ha + Z/R. 

R R, R2 
then (2.1) becomes 

Denoting the x-component of fluid velocity by u(x,z) and introducing the usual 
lubrication assumptions that both gravity and inertia effects are negligible and 
8/82 a/ax, then the Navier-Stokes equations reduce to 

where p represents fluid pressure. 
The solution of (2.3) and (2.4) subject to boundary conditions 

u = U, on z = h(x), u = U2 on z = 0 
is 

2 
u(x,z) = - - ap (22- zh) + (Ur - U2) x+ u2. 

27 ax 

For steady flows in which axial leakage is ignored, the flux Q of fluid past any 
station x is constant; hence continuity of flow yields 

Substituting for u(x, z) from (2.6) and performing the integration gives rise to 

15-2 
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FIQURE 2. Flow near the downstream fluid-air interfaoe showing the dividing streamline z = 5 
which connects A ,  the onsat of the reverse-flow region, to B the effective tip of the meniscus. 

which can be solved, in principle, for p ( x ) ,  provided that two boundary conditions are 
specified, thus permitting the evaluation of Q and the constant of integration. Two 
conditions on pressure are 

p (  - 00) = 0 (atmospheric pressure), 

P(C) = - T I T ,  

where r is the effective radius of curvature of the interface a t  its leading-edge. From 
figure 2 it is clear that an approximation to r ,  which can be achieved without solving 
the free-boundary problem is, given by 

hence 
2r+h,m+hF = h(c);  

r = &[h(c) -hi1" - h,"]. 

The formulation of a mathematical model is still incomplete, since the position 
x = c remains unknown. A third condition is therefore required and it is precisely the 
specification of this third condition which distinguishes the separation model from the 
Reynolds model. 

2.1. Formulation of the separation model 

In this model the termination of the pressure distribution is achieved by means of 
one condition on pressure and two involving fluid speed; 

p = - T / r ,  (2.10) 

aU 

az 
u = o ,  - = o .  (2.11) 

Physically they refer to conditions at  the onset of the reverse flow region, position 
A(c*, 5) in figure 2, which is both a stagnation point and a point where the streamlines 
separate. In  addition, it is necessary to regard the fluid-air interface as located down- 
stream of A and assume that fluid pressure is constant throughout the reverse-flow 
region; c* < x < c. 
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In  passing, it is observed that the above conditions refer equally to the tip of the 
meniscus, position B(c, 2 )  in figure 2, which is also a stagnation/separation point. 
However, the velocity distribution u(x,z), given by (2.6) and derived via the lubri- 
cation approximation, can in no way provide an adequate description of the two- 
dimensional flow in the reverse-flow region. Indeed it is readily seen that the applica- 
tion of (2.1 1) to (2.6) will yield only one (and not two) positions where velocity and 
velocity gradient are both zero. Hence it follows that the separation model can describe 
fluid flow only over the domain - 00 < z < c*, and the termination of the domain is 
the onset of reverse flow and not the location of the meniscus. 

Applying the above conditions to the velocity distribution (2.6) generates the 
following results : 

E = $h(c*), 
where 

(2.12) 

(2.13) 

All that now remains is to determine the individual film thicknesses e and h; by 
considering the fluid flow in the neighbourhood of the interface, as shown in figure 2. 
The dividing streamline z = E divides the volume of fluid that proceeds to flow around 
the upper roller in a uniform layer of thickness em from the volume that flows around 
the lower roller in a uniform layer of thickness hz. Continuity of flow requires that 

and therefore, after much algebra, 

Similarly 

(2.14) 

(2.15) 

It is convenient to introduce non-dimensional film-thickness ratios A,, A, defined by 

(2.16) 

such that from expressions (2.14)-(2.16) all relevant quantities can be expressed in 
terms of A, and $; 

A, = A,- + 
1-9' 
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(iii) 

(iv) 
where 

c* = [+ - lIt(RHO)t, (2.17) 

(2.18) 

Q = U1h?+U2G' = (Ul+U,)H,Alw, (2.19) 

(2.20) 

Consequently the separation model may be formulated as follows: to solve, in 
-a2 < x < c*. 

subject to 

By introducing further non-dimensional variables 

x = (RHO)* X ,  C* = (RHO)* C*, 
it is found that 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.26) 

Hence theintegrationof (2.21) and theuseof (2.22)-(2.25)yield the following equation: 

ax, 1 C' (1 + X2) - 2wA1 
- - ( 1 - 4 ) / 3 = 4 /  12 - w  (1 +X2)3 

where 1 is the modified capillary number defined by 

(2.26) 

(2.27) 

Equation (2.26) is a generalized form of that obtained by Greener & Middleman for 
the symmetric case when both rollers have equal speed. Results can be obtained giving 
A, as a function of both U1/U2 and 1. 

2.2. Limitations of the separation model 
The separation model, described by (2.21)-(2.24), can only apply to direct rolling. 
This follows since both 4 and w involve the square roots of the peripheral speeds Ul 
and U,, and it is therefore not feasible to reverse the sign of either the upper or lower 
roller speed for application to reverse rolling. Indeed, the character of the fluid flow 
in the vicinity of the fluid-air interface is significantly altered under conditions of 
reverse rolling and due account of this needs to be taken. 
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One limitation on the validity of the separation model under direct rolling conditions 
is seen by considering typical pressure profile, figure 5, arising from the solution of 
(2.21)-(2.26). The overall shape of this curve, which features a sub-atmospheric 
pressure loop immediately upstream of the interface, has been experimentally verified 
by Smith (1976) under conditions of low pressure, i.e. pressures in the fluid that are 
not significantly larger than atmospheric pressure pa. Taking (RHo)i as a typical 
length scale for 2, then 

and therefore 

(2.28) 

is the required criterion for low pressure generation, thus ensuring the validity of the 
separation model. 

Under normal operating conditions, 1 4 1 , and yet (2.28) will remain valid provided 
( T / H o ) p a l  < 16, which is indeed the case in many coating processes. In fact the criterion 
(2.28) only fails when a coating process generates fluid pressures significantly higher 
than atmospheric pressure. The reason for this is as follows: as the magnitude of the 
positive pressures (above atmospheric) is increased, then correspondingly the magni- 
tudes of the negative pressures are increased. Since there is a limit to the magnitude 
of the sub-atmospheric pressure which a fluid can sustain, then once this limit is 
reached the fluid film ruptures and the fluid-air interface is formed further upstream 
than would otherwise be the case. A typical pressure profile for high pressure genera- 
tion (p + 0) is shown in figure 6, where the appropriate conditions at  rupture are well- 
known to lubrication engineers. They are the Reynolds conditions 

p(c)  F 0, * ( C )  = 0 .  
d x  

(2.29), (2.30) 

2.3. Formulation of the Reynolds model 
In  this section the objective is to formulate a mathematical model that is applicable 
to coating processes in that region of practical interest where B+ 0. The first problem 
is to justify the use of conditions (2.29) and (2.30) as B+ 0. 

Pitts & Greiller (1961) and Savage (1977) have shown that a uniform fluid-air 
interface, 2 = c, will remain stable to small disturbances provided that at  x = c ,  

(2.31) 

If, as in the separation model, d p / d x  is assumed to be non-zero and O(pU/H$,  then 
(2.31) is equivalent to 

p 2 O(1). (2.32) 

Clearly, a+s B + 0 the above inequality no longer holds, and as a consequence the 
interface cannot remain uniformly straight along the axis of the rollers. In  fact the 
interface becomes ribbed such that the number of ribs per unit axial length varies 
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with @IT and Ho/R. Once ribs appear, giving rise to a wavy-like yet stationary 
interface, then the condition for stability is once again given by (2.31) provided that 
surface-tension pressures due to curvature in the (x,y)-plane are neglected. In  the 
limit /3 +- 0, which essentially means that all surface-tension effects are negligible, 
then (2.31) and (2.23) reduce to 

(2.33) 

which are the familiar Reynolds conditions. The formulation of the Reynolds model 
is therefore as follows: to solve, in - 00 < x < c, 

9- [(U1+ U,) h(x) - 2U1C - 2U,hZl, (2.34) 
ax hs(x) 

subject to 

p (  -00) = 0, p ( c )  = 0, 9 (c)  = 0.  (2.36), (2.36), (2.37) 

The solution to  the set of equations (2.34)-(2.37) for the pressure distribution p(x) 
and the position of the interface x = c is well-known: p(x) is everywhere above atmo- 
spheric, and c takes a value of approximately 0-46(RH0)+. However, the Reynolds 
model, m described above, is incomplete there are no additional conditions to  
determine $ ( Z  = $h(c)) which specifies the position of the dividing streamline imme- 
diately upstream of the interface as shown in figure 2. What is know is information 
concerning three special cases: 

ax 

(2.38) 

In  the absence of a more refined model that examines the fluid dynamics in the 
vicinity of and downstream of the interface then we must resort to speculative and 
intuitive arguments in order to derive a functional relationship between $ and the 
speeds (Ul, U,). Any such functional relationship must satisfy (2.38), and many possi- 
bilities exist. One obvious candidate is the generalized form of equation (2.13) appear- 
ing in the separation model, namely 

G 
$ = u;+ufy (2.39) 

where a is a positive constant - as yet unknown. 

Since 2 = $h(c) (figure 2), then continuity of flow for which dp(c)/dx = 0 yields 
We shall proceed by obtaining expressions for the two film thicknesses hw and hz .  

U2hZ = /o'hudz = U,$h+ &(Ul - U2) $2h, 

Uh? = J';udz = U2( 1 - $) h + &(U1 - U,) (1 - $2) h. 

(2.40) 

(2.41) 
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Hence 

h," - q5++(S- 1)q52,  h(c)- (2.42) 

(2.43) 

where S is the speed ratio defined by S = U1/U2. 
At this stage we recall that when S has values 0 and 00 we have exact values for 

h,"/h(c) and @/(h(c)  - see (2.38). It is therefore convenient to examine the asymptotics 
of (2.42) and (2.43) as S + 0 and S + a respectively. 

(i) limit as S + 0 :  

-- icl" - sa+*s-+ ... . (2.45) 
h(c) 

(ii) limit as S+ax 

1 +... . - =-+ ----- 
h(c) 2 25  Sa+l 2Saa 
@ 1 1  1 

(2.46) 

(2.47) 

From (2.38) we know that as S + 0, &'/h(c) + and h,"/h(c) -+ 0. Clearly from (2.45) 
it follows that 01 > +. To be more specific we must appeal to some intuitive argument. 
One such argument is that aa S + 0 (and indeed when S + a) then we might expect 
both @ and @ to exhibit the same asymptotic behaviour. Consequently (2.44) and 
(2.45) reveal that 01 = 1, and q5 is therefore given by 

Substituting for q5 into (2.42) and (2.43), and recalling that 

h(c) = Ho(l +c2/RH0) 2: 1*226H0, 

yields the following algebraic expressions for the film-thickness ratios : 

S(S + 3) 
(1+S)2'  

A t  = 0.613- 

(2.48) 

(2.49) 

(2.50) 1 + 3 S  
A? = 0.613- 

(1 + S)2. 



462 M .  D. davage 

0.9 - 

0.2 

0.1 

I I I I I I I I I 1 1 1 1 ~ 1 ~ ~ ~ ~ 1  

1 2 3 4 5 6 7 8 9 10 1 1  12 13 14 15 16 17 18 1920 

0- 
FIGURE 3. Variation of upper-film-thickness ratio A, with modified capillary 

number, B, for speed ratios U,/U, = 0.1, 0-2, 0.4, 0.0, 0.8 and 1.0. 

0 

FIGUEE 4. Variation of AT; (a) and A; (b) with UJU, according to both the separation and 
Reynolds models, together with experimental data from Warren Spring laboratory: 0, A, 
refer t o  data obtained for gap thicknesses El,, of 162, 272 and 600 pm respectively. 

3. Mathematical solutions and discussions of results 

(2.25) and (2.26). 
For the separation model, a solution for A, as a function of /3 and S follows from 

Step 1 : specify speed ratio S, hence 4 and w are fixed. 
Step 2: specify A,, hence C* is fixed. 
Step 3: evaluate the right-hand side of (2.26) either analytically or numerically, and 

hence /? is determined. 



Mathematical models for coating processm 463 

( b )  

FIGW 4(b). For legend see p. 452. 

FIGWILE 5. A typical pressure distribution from the separation model. 

Figure 3 displays six graphs of A, against /3 for six values of the speed ratio lying be- 
tween 0.1 and 1.0. The variation of A, and /3 is seen to be small for all S and /3. Further- 
more H,/R < 1 is a necessary condition for lubrication theory to be valid and so in 
practice (where T/qU is a t  most of order unity) /3 takes only small values, 0 < /? < 1. 
Hence if Afi and A t  are the limiting values of A, and A, such that A, + A t ,  A, + A: as 
/? + 0, then it is appropriate to plot Afi and A t .  against S as shown in figures 4 (a, b). 
They reveal that Afi should start at  zero when S = 0, rise to a value of Q when S = 1, 
reach a maximum when S is approximately 3.0, and then fall gradually to Q as S 
becomes large. Such trends are borne out in practice, aa illustrated by the data from 
experiments performed on a roller rig at  the Warren Spring Laboratory. 

In the case of the Reynolds model the dependence of A: and A t  on S is given by 
(2.49) and (2.50). Figure 4 shows a graph of Afi that starts from zero with an initial 
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FIGURE 6. A typical pressure distribution from the Reynolds model. 

Model Range of application 

Separation B > ( T / W  Pa' 
Reynolds B < (T/Ho) P2, B 6 1 

TABLE 1. 

slope of 1.83, reaches a maximum at S = 3.0 and falls away gradually to a limit of 
0.613 as S increases. In  contrast, the variation of A: with S is shown in figure 5 ,  where 
A t  has an initial value of 0.613, reaches a maximum at S = 4, and falls away to zero 
with increasing S. Clearly, agreement between theory and experiment compares 
equally well with that obtained using the separation model. 

It may seem rather surprising that the two sets of theoretical predictions should be 
comparable, since both models cannot be simultaneously valid - their associated 
pressure distributions, figures 5 and 6, are quite distinct. Experiments on the roller 
rig were conducted under conditions in which the modified capillary number lay in 
the range < /3 < 2*10-l, whilst the ratio of surface tension to atmospheric pres- 
sure was in the range loL3 c ( T / H , )  P i 1  c 10-2. Consequently, the criterion for using 
the separation model was always satisfied, (TIH,,) p-' c p, ,  and thus good agreement 
between theory and experiment is to be expected in this case. 

Though p was small it was clearly not small enough for the generation of high fluid 
premures. Therefore the Reynolds model does not provide an appropriate description 
of the pressure distributions attained in these experiments. However, though not 
qualitatively correct in the above sense, it does not seem to matter quantitatively, as 
far as the variation of A t  and A t  with S is concerned. 

As a general statement to be drawn from this piece of research we may conclude 
that the separation model will be applicable to coating processes having /3 values in 
excess of (T/Ho)pal ,  and the Reynolds model will have application for /3 values smaller 
than (T/H, , )p i l ,  provided, of course, that p < 1. This is summarized in table 1. 
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The work reported forms part of the project ‘Transfer of Materials by Rollers’, 
which is a component of the multiclient research programme ‘Thick Liquids and 
Pastes: Processing and Flow’, run by the Warren Spring Laboratory and funded 
jointly by the Department of Industry and a number of industrial companies. 
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